Verb agreements during on-line sentence processing in Alzheimer’s disease and frontotemporal dementia

Catherine C. Pricea,*, Murray Grossmanb

a Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
b Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA

Accepted 13 December 2004

Abstract

An on-line “word detection” paradigm was used to assess the comprehension of thematic and transitive verb agreements during sentence processing in individuals diagnosed with probable Alzheimer’s Disease (AD, \(n = 15\)) and Frontotemporal Dementia (FTD, \(n = 14\)). AD, FTD, and control participants \((n = 17)\) were asked to listen for a word in a sentence. Unbeknownst to the participants, the target word followed an agreement involving a verb’s transitivity or thematic role component. Control participants took significantly longer to respond to a target word only when it immediately followed a violation of a thematic role agreement or a transitivity agreement, relative to target word detection immediately following the corresponding correct agreement. AD patients were selectively insensitive to thematic role agreement violations, although they demonstrated a normal processing pattern for transitivity agreements. This is consistent with previous observations showing selective difficulty with the thematic role component of a verb in AD. FTD patients were insensitive to violations of thematic role and transitivity agreements. FTD patients’ impairment for both transitivity and thematic role agreements may reflect a broader degradation of verb knowledge that involves both grammatical and semantic representations, or difficulty processing sentence structure that also causes a thematic role deficit.

Keywords: Sentence comprehension; On-line processing; Verb; Thematic; Transitivity; Alzheimer’s disease; Frontotemporal dementia

1. Introduction

Verbs impart information about transitivity and thematic roles. Although there has been much theorizing about these two verb elements (Chomsky, 1965; Grimshaw, 1990; Jackendof, 1990; Shapiro & Levine, 1990), the neurocognitive basis for comprehending these two components of verb knowledge remains unclear. In the current investigation, we attempted to determine whether these two facets of a verb are dissociable by investigating on-line sentence processing profiles in patients with probable Alzheimer’s disease (AD) and Frontotemporal Dementia (FTD).

Verb transitivity and thematic roles represent two core components of verb knowledge. Transitivity is widely thought to be a grammatical feature associated with verb knowledge (Hopper & Thompson, 1980), conveying information about direct and indirect object use (Levin, 1993). For our purposes, transitive verbs are those verbs that require a direct object for a sentence to be correct. Consider the verb “put.” In the sentence “The boy puts the cup on the table,” the verb “put” requires a direct object (i.e., “the cup”). A transitive verb like “put” without a direct object is incorrect (e.g., “The boy puts the table”). Intransitive verbs, by comparison, may have an indirect object (e.g., “The boy sleeps on the bed”) but should not have a direct object (e.g., “The boy sleeps the bed”).

* This work was completed in partial fulfillment of the Doctor of Philosophy degree in the Department of Psychology, Drexel University, Philadelphia, PA. This work was supported in part by Grants from the US Public Health Service (AG17586 and AG15116).

* Corresponding author. Fax: +1 352 392 6893.
\textit{E-mail address:} cprice@phhp.ufl.edu (C.C. Price).
Verbs also convey meaning about ‘who can do what to whom.’ This is called “thematic role knowledge.” Thematic role knowledge is widely thought to be constrained by the conceptual or semantic structure of a verb (Jackendoff, 1972, 1990). Thematic roles refer to functions that participants and objects play in a sentence, such as ‘agent,’ ‘patient,’ ‘theme,’ ‘goal,’ ‘instrument,’ and ‘location’ (Jackendoff, 1994; Levin, 1993). For example, “The girl puts the cup on the table.” In this sentence, ‘The girl’ is the agent because she is performing the event, ‘the cup’ is the patient because the event is being performed on it, and ‘the table’ is the location because it is the place where the cup is being put.

Sentence processing difficulty is a prominent feature of FTD patients with progressive aphasia (Grossman, D’Esposito, et al., 1996; Mesulam, 2001; Snowden, Griffiths, & Neary, 1994; Snowden, Neary, et al., 1992; Thompson, Ballard, et al., 1997; Weintraub, Rubin, et al., 1990). With rare exceptions, assessments of sentence processing have involved traditional, off-line measures. Task-related resource demands involved with off-line measures (e.g., judging the grammaticality of a sentence or pointing to one of four pictures based on a sentence) confound our ability to assess the relative contribution of syntactic, semantic, and executive components to sentence processing. To circumvent this problem, Tyler, Moss, et al. (1997) used an on-line word-monitoring technique to assess sensitivity to a grammatical agreement violation in a patient with Progressive Non-fluent Aphasia (PNFA). In this technique, subjects are asked to detect a target word in a sentence. Unbeknownst to subjects, the target word is strategically placed immediately after the grammatical agreement. Healthy subjects ordinarily take several milliseconds longer to respond to the target word when it immediately follows a grammatical agreement violation compared to its detection following a correct grammatical agreement. Evidence to support the claim that this delay is related to the location of the target word in the temporal window for grammatical processing comes from the absence of the delayed response when the target word follows an agreement by several words. The patient studied by Tyler, Moss, et al. (1997) was insensitive to the grammatical agreement violation with this on-line technique, as demonstrated by the absence of a delay in target word detection immediately following a grammatical agreement violation. In a subsequent study using the same technique (Grossman, Rhee, et al., 2004), PNFA patients were insensitive to grammatical agreements such as pluralization, determiner-noun agreement, and Q-float in the immediate temporal window following an agreement violation. However, they were sensitive to a grammatical agreement violation following a delay, suggesting a pattern of slowed activation of grammatical processes. These PNFA patients also were significantly impaired in their off-line sentence comprehension, and their performance correlated with a measure of working memory. Grossman and colleagues hypothesized that knowledge critical to long-distance syntactic dependencies and retained in working memory may have degraded during the slowed grammatical activation.

Several studies have demonstrated that sentence comprehension is compromised in patients with Alzheimer’s disease (AD) as well. The basis for this deficit, however, has been unclear. Using traditional measures such as sentence-picture matching and sentence probe tasks, some investigators attributed impaired sentence comprehension to a grammatical deficit (Emery, 1985; Grober & Bang, 1995; Kontiola, Laaksonen, et al., 1990). More recent work has focused on a limitation in the cognitive resources that contribute to sentence comprehension such as working memory (Almor, Kempler, et al., 1999; Croot, Hodges, et al., 1999; Grossman & White-Devine, 1998; Rochon, Waters, et al., 1994; Waters, Caplan, & Rochon, 1995; Waters & Caplan, 1997).

Another potential source of comprehension difficulty in AD may be an impairment at a semantic level of processing that parallels their difficulty with single word comprehension. Although it has been suggested that AD patients experience some grammatical difficulty as shown by their deficit matching a brief sentence containing a quantifier violation such as “The glass contains much milk” or “The bowl has many cereal” to one of four pictures (Grossman, Mickanin, et al., 1995), many other studies demonstrate semantic difficulties. For example, AD patients have shown an impaired ability to correctly identify incorrect semantic agreements such as “The door is singing,” in which the agent ‘door’ violates the selection restriction associated with the predicate ‘is singing’ (Grossman, Mickanin, et al., 1996). In another study examining the ability to learn the grammatical and thematic aspects of the new verb “wamble,” AD patients were found to acquire information about its grammatical properties (e.g., the new word is a verb that plays a particular grammatical role in a sentence), but had difficulty learning about the new word’s thematic role properties (Grossman, Mickanin, et al., 1997). Another recent study used an on-line word detection task to demonstrate that AD patients have impaired sensitivity to semantic agreement violations such as “The handsome young man pointed the yellow in the right direction” (Grossman & Rhee, 2001; Rhee, Antiquena, et al., 2001). AD patients nevertheless showed relatively normal sensitivity to grammatical agreement violations involving pluralization and negation agreements. This sensitivity occurred, however, in a manner that was delayed beyond the normally rapid temporal processing window for the target grammatical agreement. These findings emphasized the contribution of a semantic limitation to impaired sentence processing in AD, and related a grammatical processing deficit to resource limitations like slowed information processing speed.
While previous work has examined sentence comprehension in FTD and AD from the perspective of processing deficits associated with long-distance syntactic dependencies, another possibility is that these patients have impaired sentence comprehension because of a deficit related to impaired verb knowledge. Verbs are at the core of a sentence, guiding sentence features such as thematic role assignment and transitivity. It appears that FTD patients and AD patients have difficulty with verbs. Patients with FTD are reported to have impaired naming of verbs relative to nouns (Cappa, Binetti, et al., 1998; Rhee, Antiquena, et al., 2001). A study by Rhee, Antiquena, et al. (2001) compared noun and verb comprehension alone and during a concurrent dual task in patients diagnosed with FTD. These patients were significantly less accurate and required significantly longer to make word-picture matching judgments about verbs relative to nouns at baseline. During concurrent performance on a secondary task, accuracy decreased and response latencies became prolonged for nouns to the point that these measures equaled performance with verbs at baseline. Several studies have shown that AD patients have a small but consistent disadvantage in their comprehension and naming of verbs compared to nouns (Cappa, Binetti, et al., 1998; Robinson, Grossman, et al., 1996; White-Devine et al., 1996), although exceptions to verb difficulty have been seen in individual patient analyses in these studies and in other reported cases (Fung, Chertkow, et al., 2001; Robinson, Rosser, et al., 1999). In one study that taught AD patients a new verb, difficulty was seen in acquiring thematic information, although the patients were able to acquire knowledge such as major grammatical form class (Grossman, Mickanin, et al., 1997). Work noting AD patients' impairment for function features (Johnson & Hermann, 1995; Lambon Ralph, Graham, et al., 1998) implies an impairment in verb thematic relations representing “who does what to whom.”

In the present study, transitivity and thematic role components of verb knowledge were investigated in individuals diagnosed with AD and FTD while using an “on-line” sentence processing procedure. We used the on-line word-detection technique pioneered by Marslen-Wilson and Tyler (1980) to assess processing of these verb elements while minimizing confounds associated with the executive resource limitations observed in AD (Almor, Kempler, et al., 1999; Croot, Hodges, et al., 1999; Grossman & White-Devine, 1998; Kempler, Almor, et al., 1998; Rochon, Waters, et al., 1994; Waters et al., 1995; Waters & Caplan, 1997) and FTD (Elfgen, Passant, et al., 1993; Hodges, Patterson, et al., 1999; Miller, Cummings, et al., 1991; Puchana, Boone, et al., 1996). In the present study investigating verb-related sentence agreements, we hypothesized different patterns of sensitivity to thematic and transitivity agreements. We expected AD patients to show limited sensitivity to thematic role agreements because of the rich semantic component of this agreement, but normal sensitivity to transitivity agreements. However, FTD patients were expected to demonstrate limited sensitivity to thematic (i.e., semantically related) and transitivity (i.e., grammatical) agreements associated with verbs because of their broader deficit with verbs.

2. Methods

2.1. Participants

A total of 46 right-handed native English speakers were included in this investigation. Fifteen individuals with AD and 14 individuals with FTD were recruited from the Cognitive Neurology Clinic at the Hospital of the University of Pennsylvania. These patients were compared with 17 non-depressed, right-handed, high school-educated, native English speakers who were neurologically intact.1 The demographic features of the participants are summarized in Table 1. The three groups were matched for education \(F(2,43) = 0.24; \) ns and age \(F(2,43) = 3.21; \) ns. The AD and FTD groups were equivalent in their overall dementia severity, as measured by the Mini Mental State Exam (Folstein, Folstein, et al., 1975) \((t(27) = 0.45; \) ns\). There was no difference in male/female ratios across groups \(\chi^2(2) = .70; \) ns. The control subjects were recruited from among the spouses of the patients. The diagnosis of AD was made according to the National Institute of Neurologic and Communicative Disorders and Stroke-Alzheimer’s Disease and Related Disorders Association criteria (McKhann, Drachman, et al., 1984). Diagnosis for FTD was made according to published criteria (Lund/Manchester, 1994; McKhann, Albert, et al., 2001). Patients with FTD were placed into three subgroups (Progressive Non-Fluent Aphasia, PNFA; Semantic Dementia, SD; Executive dysfunction, EXEC) based on published criteria (Neary, Snowden, et al., 1998), as modified by Davis, Price, et al. (2001) and Price, Davis, et al. (2001) to improve reliability. A consensus mechanism was used to assign patients to diagnostic groups. At least two trained reviewers considered a semi-structured history, a detailed mental status exam, and a full neurologic evaluation in the severely depressed range on the Geriatric Depression Scale (Brink et al., 1982), 1 scored below the normal cut-off of 24 on the MMSE: \(AD: \) 1 reported ambidexterity, 1 was unable to comprehend instructions for the on-line sentence task; \(FTD: \) 3 developed clinical features of Corticobasal Degeneration with longitudinal follow-up, 4 were unable to effectively comprehend sentence task, 1 did not have English as a first language, and 1 did not complete the protocol due to a time constraint.

1 Fifty-nine participants were originally tested (19 controls, 17 AD, and 23 FTD patients). This participant dataset that we are reporting was reduced in size for the following reasons: \(CONTROLS: \) 1 scored in the severely depressed range on the Geriatric Depression Scale (Brink et al., 1982), 1 scored below the normal cut-off of 24 on the MMSE: \(AD: \) 1 reported ambidexterity, 1 was unable to comprehend instructions for the on-line sentence task; \(FTD: \) 3 developed clinical features of Corticobasal Degeneration with longitudinal follow-up, 4 were unable to effectively comprehend sentence task, 1 did not have English as a first language, and 1 did not complete the protocol due to a time constraint.
exam to classify patients. When there was a disagreement (11% of patients), the full committee resolved the difference through discussion. Exclusion criteria included the presence of other causes of dementia such as vascular disease [Hachinski ischemia scores (Rosen, Terry, et al., 1980) were 2 or less in all patients], primary psychiatric disorders such as depression or psychosis, medical illnesses or metabolic derangements that may result in an encephalopathy, infection diseases that may result in a progressive intellectual decline, and other neurological conditions affecting the central nervous system that may impact cognitive performance. None of the patients were taking sedating medications at the time of testing. Additionally, because our investigation assessed auditory sentence comprehension, all patients were assessed with an auditory discrimination test for words, Wepman's Auditory Discrimination Test (Wepman & Reynolds, 1987).

2.2. Materials and procedure

2.2.1. Word detection procedure

The sentence stimuli for the sentence comprehension tasks were designed around 30 verbs (15 transitive and 15 intransitive). These verbs were selected from a group of 187 intransitive and transitive verbs that were initially identified from the American Heritage Dictionary (1999) based on their ‘pure’ transitive and intransitive properties, and then judged for familiarity by 64 individuals (42 undergraduates, 22 healthy seniors). Only those verbs endorsed as familiar by 100% of these individuals were candidates for inclusion in this study. The transitive and intransitive verbs were matched for English corpus frequency using Francis and Kucera (1982) norms [t(28) = 0.67; ns], syllable length [t(28) = 0.75; ns], and letter length [t(28) = 0.13; ns].

Each verb was represented in six types of sentences that used a simple present tense Noun Phrase–Verb Phrase format limited to an average of eight words per sentence [mean # of words per sentence = 8.06; SD = 0.62]. The transitive and thematic violations, and the corresponding control sentences (i.e., containing coherent agreements), were created from judgment responses of 55 undergraduate students who were recruited to rate each sentence for plausibility. For this judgment task, each undergraduate was asked to read each sentence and identify whether the sentence was ‘plausible,’ ‘somewhat plausible,’ or ‘not plausible.’ This task was conducted to ensure that only the control sentences contained coherent semantic and grammatical agreements relative to the sentences that contained agreement violations. For example, it was imperative that the thematic control sentences had a coherent subject–verb relationship (such as ‘The cat scratches...’), in contrast to sentences containing a thematic violation (such as ‘The air scratches...’). Appendix A lists the sentence stimuli.

Based on a paradigm introduced by Marslen-Wilson and Tyler (1980) and Tyler (1985), each trial began with the aural presentation of a target word. Then a brief auditory warning signal was heard 500 ms prior to the aural presentation of a sentence. Participants were instructed to press the space bar on the computer as soon as the target word was heard in the sentence. This button press stopped the computer’s clock that had been initiated at the beginning of the target word in the sentence. Without informing the participants, half of the sentences contained an agreement violation prior to the target word. Within these sentence violations, 33% contained a transitive/intransitive violation, and 33% contained a thematic agreement violation, and 33% of the remaining sentences served as fillers containing other kinds of violations. Each violation condition also had an equal number of control sentences that consisted of identical sentences—the only difference was that they did not contain a violation.

Two time window conditions for each violation and control sentence were used to establish the temporal envelope for agreement processing. These two time window conditions included an immediate condition (the agreement under investigation was immediately followed by the target word) and a four-syllable delay condition (the target word followed the agreement of interest with four intervening syllables). Pilot investigations showed that unstressed grammatical morphemes such as ‘a’ or ‘the’ are more difficult to identify than content words such as adjectives, adverbs, or nouns during this on-line auditory word detection task. For this rea-
son, both the immediate and delay target words for all sentences were content words (i.e., nouns, adverbs, and adjectives) rather than articles (i.e., ‘a,’ ‘the’). Each target word was also tested for predictability within its sentence context using a cloze procedure. Immediate and delay target word predictability was assessed by a group of undergraduate students (total n = 44) with a cut-off rule requiring that the target could not be judged as predictable by more than 10% of the undergraduates. In addition to these criteria, all target words in each sentence type were matched for frequency of use in the English corpus (Francis & Kucera, 1982) and the types of sentence violations contained an equal number of noun, prepositions, adverb, and adjective targets.

\[\chi^2(6) = 4.38; \text{ns}. \]

Overall, across all of these conditions, a total of 360 sentences were presented to each participant. The 360 sentences were divided into four balanced blocks of stimuli. Each block contained 90 sentences with equal numbers of randomly ordered violations and control items. Each sentence block took approximately 15–20 min to complete. A stimulus sentence containing an agreement violation and its paired control sentence featuring the corresponding coherent agreement were placed in different blocks, and these were distributed so that pairs of blocks containing these pairs of sentences were administered in different sessions separated by 2–4 weeks. To ensure that participants were listening to sentences and not merely performing a vigilance test for a single word, each participant’s knowledge of the content of 10% of the correct sentences in each block was probed randomly after a target word response was elicited: They were asked a question about a fact in the sentence and required to provide an answer. Patients who were unable to complete this requirement were excluded from the study.

A training procedure was designed with six sentences to introduce the participants to the word detection paradigm, to familiarize them with the response modality, and to prepare them for random question probes during the course of stimulus sentence presentation. Each participant was given up to five repetitions of this training procedure before the experimental testing procedure began. Patients who could not complete the training procedure were excluded from the study.

The stimuli were digitized by SoundEdit v2.0 software using 16 bit sound files, stimulus presentation was controlled by PsyScope v1.2.5 software (Cohen, MacWhinney, Flatt, & Provost, 1993), and a Macintosh G3 laptop computer was used to administer the stimuli and record the responses. Latencies to respond to the target words were analyzed once very long (>10 s) and very short (<100 ms) responses had been eliminated, and the remaining responses had been screened within each participant using a two-standard deviation filter based on each participant’s mean response latency. This resulted in the elimination of equal percentages of items from the protocol for control participants [mean ± SD = 7.14 ± 4.20%; AD patients [mean ± SD = 5.91 ± 4.26%], and FTD patients [mean ± SD = 8.57 ± 4.58%; F(2, 43) = 1.37, ns].

2.2.2. Additional cognitive background tasks

Measures of language and executive function were administered to all participants. These included:

- Test for the Reception of Grammar (TROG; Bishop, 1989)—The TROG is an 80-item four-choice sentence-picture-matching test. It is divided into 20 blocks of four items each, with each block testing a different lexical, morphosyntactic or syntactic construction. A block is scored as passed only if all four items within it are answered correctly. Later blocks are generally more difficult than earlier blocks. The dependent variable included total number of items correct.

- Pyramid and Palm Tree Test (PPT; Howard, 1992)—This test is designed to measure semantic associates for concrete noun words and pictured objects. For the purpose of this experiment, individuals were tested on their ability to judge the associativity of 52 word sets in a forced-choice, two-alternative format (e.g., given the target ‘Glass,’ which of these two words goes best with the target: ‘Bottle,’ ‘Mug’). The dependent variable included total number of items correct.

- Verb Similarity Task (VST)—The VST uses a 473 forced-choice, 2-alternative format (paralleling the Pyramid and Palm Tree Test) to assess low and high synonym associativity. This task presents a target verb visually centered on a computer screen and above two other verbs. The participant is required to choose which of these two words is most similar in meaning to the target word. For this task, we attempted to control for differences in verb semantic representation (verb of motion, verb of cognition, and verb of perception) and argument structure (transitive vs. intransitive). To identify the semantic representation of each target word, we recruited 58 individuals (English first language; 35 undergraduate students; 23 healthy seniors) to categorize 187 verbs as either a verb of motion or a verb of perception/cognition. From this set, 50 verbs were identified (25 verbs of motion, 25 perception/cognition verbs). Together, these 50 verbs included 25 transitive verbs, 19 intransitive, and 6 verbs that could be either transitive or intransitive depending on sentence role (as identified from the American Heritage Dictionary, 1999). The forced-choice responses for the task were developed based on a normative database in which undergraduate students (n = 86; all native English-speakers) were asked to listen to each target verb and immediately list at least five associated verbs. The participants were provided with practice examples prior to administration of the task (i.e., “The verb SNEEZE might generate the verbs BLOW, SNIF...”). The correct answer and competing
foils were selected according to the frequency of response. The original 50 triads were reduced to 48 when we found that healthy seniors were performing at chance on two of the items. Items were presented in a random order, and the correct force-choice responses were balanced in their right vs. left location. For the verb task, all targets and forced-choice responses were matched for English corpus frequency and for their use as a verb with at least a 5:1 verb/noun ratio using Francis and Kucera (1982) norms [frequency \(F(2,141) = 1.80, ns\); verb/noun ratio \(F(2,141) = 0.71, ns\)]. In addition, all targets and responses were matched in English corpus frequency to that of the Pyramid and Palm Tree Test triads [frequency \(t(298) = 0.18, ns\)].

Trail Making Test Part B (Trails B test; Reitan, 1958)—A measure of planning and inhibitory control that requires participants to trace a line between an ascending series of alternating numbers and letters randomly arrayed on a printed page. Our dependent variable included the amount of time required to complete the task (one AD patient refused to complete the Trail B test).

2.2.3. Statistical considerations

Raw reaction times were recorded for the number of milliseconds it took a person to respond to a target word following a verb agreement that is correct or incorrect. From these raw reaction times, difference scores were computed. The equation for the “difference score” was: [ms reaction time to a target word following an incorrect agreement – ms reaction time to a target word following a correct agreement]. Sensitivity to an agreement violation involves a delay in reaction time to target word detection immediately after the abnormal agreement relative to target word detection immediately following a correct agreement. However, a return to baseline following completion of processing for the grammatical agreement is demonstrated by equivalent latencies to target word detection following an incorrect agreement and a correct agreement by about four syllables downstream from the violation. To assess this normal processing pattern, an immediate “difference score” and a delay “difference score” were computed. The equation for the immediate “difference score” was: [ms reaction time to a target word immediately following an incorrect agreement – ms reaction time to a target word immediately following a correct agreement]. The equation for the delay “difference score” was: [ms reaction time to a target word located four syllables downstream from the incorrect agreement – ms reaction time to a target word located four syllables downstream from the correct agreement]. If normal processing is demonstrated, then the “difference score” for the immediate position should be greater than the “difference score” occurring downstream from the verb’s agreement. We conducted a repeated measures ANOVA to examine performance differences between participant groups. Within-group analyses were conducted for each participant group as well, to confirm that normal processing with the sentences took place for the health senior control group and to examine our specific hypotheses about AD and FTD performance patterns for the transitive and thematic conditions. For the within-group analyses, two sets of pair-wise comparisons were conducted for each participant group. First, for each sentence condition, we conducted pair-wise comparisons of immediate and delayed “difference scores.” Second, to confirm sensitivity patterns, follow-up planned comparisons were conducted between raw reaction times to target words following incorrect agreements and raw reaction times to correct agreements. Tables 2 and 3 provide the raw reaction times for both the thematic and transitive conditions.

3. Results

3.1. Repeated measures ANOVA

A (Group: Control, AD, FTD) × 2 Sentence Condition (Thematic, Transitive) × Time (Immediate, Delay) Repeated Measures ANOVA was used to examine differences in group sensitivity patterns to each of the sentence conditions. The between-group main effect was not significant \([F(2,43) = 2.53, p = .09]\) but suggested a trend for the FTD patients to be less sensitive regardless of sentence type of violation position (millisecond over-
all difference score mean ± SD by group: FTD = −17.80 ± 12.83; AD = 15.79 ± 12.30; Control = 17.65 ± 11.64). In regard to main effects, a significant effect of Time \(F(1,43) = 8.64, p < .005\) confirms that all participants, regardless of group diagnosis, demonstrated greater reaction times to the targets immediately following any sentence violation (mean ± SD = 28.83 ± 10.59) relative to the four-syllable delay position (mean ± SD = −18.40 ± 10.85). There were no significant two-way or three-way interactions [Group × Time: \(F(2,43) = .27, n.s\); Group × Sentence type: \(F(2,43) = .24\); Group × Sentence Condition × Time: \(F(2,43) = .28, n.s\)]. We interpret these findings as supportive of the validity of our sentence processing paradigm in general.

3.2. Within group comparisons for transitive and thematic conditions

3.2.1. Healthy seniors

Healthy seniors demonstrated normal sensitivity to both transitivity and thematic agreements. Specifically, for the transitivity agreement condition, the healthy seniors had a greater “difference score” in the immediate temporal window [mean ± SD = 32.24 ± 5.49 ms] relative to the “difference score” during the delayed temporal window [mean ± SD = −7.31 ± 30.02 ms; \(t(16) = .323, p < .006\)]. These difference scores are illustrated in Fig. 1. In the immediate “difference score” position, follow-up planned analyses showed that healthy seniors demonstrate a prolonged reaction time latency to a target word following the incorrect transitivity agreement [mean ± SD = 548.32 ± 74.33 ms] relative to a correct transitivity agreement [mean ± SD = 516.08 ± 85.92 ms; \(t(16) = 2.42, p < .003\)]. This reaction time latency pattern was not observed in the delayed “difference score” position [delayed incorrect agreement mean ± SD = 465.83 ± 74.80 ms; delayed correct agreement mean ± SD = 473.55 ± 72.90 ms; \(t(16) = 1.06, n.s\)]. These findings suggest that the healthy seniors exhibited normal sensitivity for the transitivity component of a verb’s representation.

Healthy seniors also had a normal processing pattern for the thematic agreements. As shown in Fig. 1, these participants had a greater “difference score” for the thematic agreements in the immediate temporal window [mean ± SD = 43.41 ± 36.97 ms] relative to the “difference score” for the thematic agreements in the delayed temporal window [mean ± SD = 2.68 ± 31.14 ms; \(t(16) = 3.87, p < .002\)]. Specifically, the greater immediate “difference score” involved longer latencies to the target words following an incorrect thematic agreement [mean ± SD = 536.55 ± 89.65 ms] relative to a correct thematic agreement [mean ± SD = 493.14 ± 84.24; \(t(16) = 4.84, p < .001\)]. A difference in latency following incorrect and correct thematic agreements was not observed for target words in the four-syllable delay position [delay incorrect agreement mean ± SD = 453.76 ± 63.59 ms; delay correct agreement mean ± SD = 451.07 ± 69.93; \(t(16) = 0.36, n.s\)]. These findings suggest that the healthy seniors exhibited normal processing for the component of verb representation involving thematic agreements.

3.2.2. AD patients

AD patients were sensitive to transitivity agreements but not thematic agreements, as shown in Fig. 1. Thus, resembling healthy seniors, the AD patients demon-
strated a greater “difference score” for the transitivity agreement in the immediate temporal window [mean ± SD = 34.65 ± 50.86 ms] compared to the “difference score” in the delayed temporal window [mean ± SD = -14.86 ± 67.02 ms; t(14) = 3.93, p < .002]. Planned comparisons confirmed that the AD patients’ “difference score” for transitivity agreements in the immediate temporal window involve longer latencies to the target words following incorrect agreements [mean ± SD = 676.73 ± 136.35 ms] compared to correct agreements [mean ± SD = 642.08 ± 146.71 ms; t(14) = 2.64, p < .02]. This difference between latencies for incorrect and correct agreements was not observed for target words in the four-syllable delay position [delay incorrect agreement mean ± SD = 594.16 ± 154.99 ms; delay correct mean ± SD = 609.02 ± 177.24 ms; t(14) = 0.86, ns]. These findings indicate that the AD participants normally processed the verb grammatical agreement involving transitivity.

For the thematic condition, ADT patients did not demonstrate a greater “difference score” in the immediate temporal window relative to the “difference score” in the delayed temporal window [immediate mean ± SD = 28.56 ± 64.14 ms; delay mean ± SD = 14.80 ± 41.80 ms; t(14) = 0.79; ns]. Moreover, AD patients did not demonstrate a longer latency to respond to a target word following the incorrect thematic agreements, relative to the correct thematic agreements, in either the immediate temporal window [incorrect agreement mean ± SD = 682.12 ± 178.67 ms; correct agreement mean ± SD = 653.57 ± 220.45 ms; t(14) = 1.72; ns] or the delayed temporal window [incorrect agreement mean ± SD = 600.33 ± 251.44 ms; correct agreement mean ± SD = 585.53 ± 251.27 ms; t(14) = 1.37; ns]. This finding indicates that the participants diagnosed with AD were insensitive to thematic agreement violations.

3.2.3. FTD patients

As a group, Fig. 1 shows that FTD patients were insensitive to both transitivity and thematic agreements. For the transitivity agreement, the FTD patients did not demonstrate a greater “difference score” in the immediate temporal window relative to the “difference score” in the delayed temporal window [immediate mean ± SD = 3.46 ± 167.65 ms; delay mean ± SD = -62.63 ± 129.96 ms; t(13) = 1.04; ns]. Moreover, the FTD patients did not demonstrate a longer latency to detect a target word following incorrect agreements, relative to correct agreements, in either the immediate temporal window [incorrect agreement mean ± SD = 831.78 ± 247.81 ms; correct agreement mean ± SD = 828.31 ± 212.94 ms; t(13) = 0.08; ns] or the delayed temporal window [incorrect agreement mean ± SD = 702.92 ± 218.01 ms; correct agreement mean ± SD = 765.54 ± 296.34 ms; t(13) = 1.80; ns]. This finding indicates that, unlike healthy seniors and AD patients, the FTD patients were insensitive to transitivity agreements.
893

892

890

887

886

884

883

879

878

877

875

871

865

864

861

860

859

858

855

852

851

850

849

843

841

840

838

838

893

892

890

887

886

884

883

879

878

877

875

871

865

864

861

860

859

858

855

852

851

850

849

843

841

840

838

25 January 2005 Disk Used Jaya (CE) / Hemavathy (TE)

Table 4

<table>
<thead>
<tr>
<th>Group</th>
<th>PPTb (%) correct</th>
<th>VSTc (%) correct</th>
<th>TROGd (%) correct</th>
<th>TMT Part Bc (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Con</td>
<td>94.91 ± (2.80)</td>
<td>93.91 ± (4.70)</td>
<td>97.97 ± (2.13)</td>
<td>108.19 ± (72.75)</td>
</tr>
<tr>
<td>AD</td>
<td>85.38 ± (11.35)</td>
<td>83.75 ± (13.75)</td>
<td>92.59 ± (8.94)</td>
<td>215.29 ± (102.47)</td>
</tr>
<tr>
<td>FTD</td>
<td>84.07 ± (12.13)</td>
<td>75.60 ± (17.30)</td>
<td>87.23 ± (10.53)</td>
<td>238.14 ± (122.94)</td>
</tr>
<tr>
<td>PNFA</td>
<td>82.69 ± (15.00)</td>
<td>75.35 ± (21.43)</td>
<td>85.83 ± (9.95)</td>
<td>273.67 ± (134.08)</td>
</tr>
<tr>
<td>SD</td>
<td>84.62 ± (12.28)</td>
<td>78.47 ± (11.31)</td>
<td>88.75 ± (11.78)</td>
<td>237.33 ± (118.61)</td>
</tr>
<tr>
<td>EXEC</td>
<td>86.54 ± (2.72)</td>
<td>67.71 ± (27.99)</td>
<td>86.88 ± (15.03)</td>
<td>134.00 ± (82.02)</td>
</tr>
</tbody>
</table>

- a Group Comparisons: Separate 3 (Group: AD, FTD, Con) x Task One-Way ANOVAs were conducted and are reported by test below. Independent-sample t tests show the PNFA and SD subgroups performed equally on all tasks. The EXEC subgroup was not compared due to the small group number.
- b Pyramid and Palm Tree Test (Howard, 1992); F(2, 43) = 6.27, p < .01 with the AD and FTD equally less accurate relative to the Control group.
- c Verb Similarity Task—an experimental word task that models the format of the Pyramid and Palm Tree Test; F(2, 43) = 7.44, p < .01 with only the FTD group less accurate relative to Control group.
- d Test for the Reception of Grammar (Bishop, 1989); F(2, 41) = 6.93, p < .01 with only the FTD group less accurate relative to the Control group.
- e Trail Making Test—Part B (Reitan, 1958); F(2, 42) = 7.29, p < .01 with the AD and FTD groups equally slower relative to the Control group.

An analysis of individual participant performance profiles showed that three of the six (50%) of the PNFA and three of the six (50%) of the SD patients had a greater (violation-correct) discrepancy in their latency to respond to a target word immediately following a thematic agreement compared to the “difference score” following a four-syllable delay. Moreover, three of the six (50%) of the PNFA and five of the six (83%) of the SD patients had a greater (violation-correct) discrepancy in their latency to respond to a target word immediately following a thematic agreement. Although we did not find a significant effect in SD because of the small number of patients and the wide variability in performance, this observation begins to suggest an association between thematic role knowledge in verbs and lexical semantic knowledge that is often impaired in SD.

4. Discussion

Verbs play important roles in sentences. Verbs relay grammatical information such as transitivity—a grammatical role organized around a verb’s direct and indirect object use. Verbs also relay semantic information involving thematic roles—such as who can perform an action in AD and FTD patients, correlation analyses revealed that sensitivity to the thematic agreement correlated with our experimental ‘verb similarity task’ (r = .59, p = .02). No other correlations approached significance. This finding suggests that thematic role knowledge may be important for the understanding of verb meaning. As verb meaning becomes difficult in AD, thematic role knowledge also becomes impaired. For the FTD patients, no significant correlations were seen between verb agreement sensitivity and measures of language and executive functioning.

3.2.4. Correlations between agreement sensitivity and measures of language and executive functioning

Table 4 provides group scores for the additional language and executive background tasks. To improve our understanding of AD and FTD patients’ sensitivity to verb roles, we correlated each patient groups’ measure of overall agreement sensitivity with measures of language and executive functioning. A summary difference score was created for transitivity sensitivity and thematic sensitivity with the following equation: [Immediate “Difference Score” – Delay “Difference Score”]. Patients who did not complete one or more of the additional cognitive tasks were removed from the analyses. For the AD patients, correlation analyses revealed that sensitivity to the thematic agreement correlated with our experimental ‘verb similarity task’ (r = .59, p = .02). No other correlations approached significance. This finding suggests that thematic role knowledge may be important for the understanding of verb meaning. As verb meaning becomes difficult in AD, thematic role knowledge also becomes impaired. For the FTD patients, no significant correlations were seen between verb agreement sensitivity and measures of language and executive functioning.

Table 4 provides group scores for the additional language and executive background tasks. To improve our understanding of AD and FTD patients’ sensitivity to verb roles, we correlated each patient groups’ measure of overall agreement sensitivity with measures of language and executive functioning. A summary difference score was created for transitivity sensitivity and thematic sensitivity with the following equation: [Immediate “Difference Score” – Delay “Difference Score”]. Patients who did not complete one or more of the additional cognitive tasks were removed from the analyses. For the AD patients, correlation analyses revealed that sensitivity to the thematic agreement correlated with our experimental ‘verb similarity task’ (r = .59, p = .02). No other correlations approached significance. This finding suggests that thematic role knowledge may be important for the understanding of verb meaning. As verb meaning becomes difficult in AD, thematic role knowledge also becomes impaired. For the FTD patients, no significant correlations were seen between verb agreement sensitivity and measures of language and executive functioning.

Table 4 provides group scores for the additional language and executive background tasks. To improve our understanding of AD and FTD patients’ sensitivity to verb roles, we correlated each patient groups’ measure of overall agreement sensitivity with measures of language and executive functioning. A summary difference score was created for transitivity sensitivity and thematic sensitivity with the following equation: [Immediate “Difference Score” – Delay “Difference Score”]. Patients who did not complete one or more of the additional cognitive tasks were removed from the analyses. For the AD patients, correlation analyses revealed that sensitivity to the thematic agreement correlated with our experimental ‘verb similarity task’ (r = .59, p = .02). No other correlations approached significance. This finding suggests that thematic role knowledge may be important for the understanding of verb meaning. As verb meaning becomes difficult in AD, thematic role knowledge also becomes impaired. For the FTD patients, no significant correlations were seen between verb agreement sensitivity and measures of language and executive functioning.
comparison, AD patients were impaired at processing
the thematic agreements, and FTD patients appeared to
be insensitive to transitivity and thematic role agree-
ments. We argue below that impaired thematic role pro-
cessing in AD may be related to impaired verb semantic
knowledge. FTD patients’ impairment for both trans-
itivity and thematic role agreements may reflect a
broader degradation of verb knowledge that involves
both grammatical and semantic representations, or diffi-
culty processing sentence structure that also causes a
thematic role deficit.

4.1. Alzheimer’s disease and verb comprehension

AD patients, like the healthy seniors, demonstrated
intact sensitivity to agreements involving transitivity.
However, they did not demonstrate the normal pattern
for thematic role agreements. It is unlikely that impaired
thematic role agreement sensitivity in AD is due to task-
related resource demands, because the on-line compre-
hension task used to assess verb role sensitivity minimizes
executive resource demands needed to perform the task.
Moreover, this would not explain AD patients’ normal
performance for transitivity agreements using the same
 technique. These findings are consistent with reports that
verb thematic information is processed differently from
verb transitivity information (Shapiro, Zurif, et al., 1987;
Shapiro, Zurif, & Grimshaw, 1989). This dissociation
instead may indicate that AD patients are selectively
impaired comprehending the semantic roles associated
with verbs. Previous work has shown that individuals
diagnosed with AD are impaired with the thematic, but
not grammatical roles, of verbs (Grossman, Mickanin,
et al., 1997). This difficulty with semantic information
represented in verbs is consistent with the view that indi-
viduals with AD have semantic impairments (Chan,
Salmon, et al., 1995; Chertkow & Bub, 1990; Cummings,
Benson, & Hill, 1985; Glosser, Kohn, et al., 1997; Hodges,

Some investigators argue that AD results in a loss of
semantic knowledge (i.e., semantic degradation hypothe-
sis). One possibility thus suggests that impaired thematic
agreement sensitivity results from semantic network deg-
radation. Although not a universal finding (Fung, Chert-
kow, et al., 2001; Robinson, Rosser, et al., 1999;
Williamson, Adair, et al., 1998) many studies have shown
that individuals with AD have greater difficulty with
verbs than nouns (Bushell & Martin, 2002; Cappa,
Binetti, et al., 1998; Robinson, Grossman, et al., 1996;
White-Devine et al., 1996). Semantic knowledge associ-
ated with verbs may be more susceptible to degradation
because it is embedded in a sparser, less redundant and
less hierarchically organized semantic matrix than nouns
(Levin, 1993). Indeed, some researchers have hypothe-
sized that random damage associated with the disease
reduces the redundancy of the semantic network under-
lying a word, and this may make a word more suscepti-
ble to comprehension difficulty in AD (Devlin, Gonnerman,
et al., 1998; Gonnerman, Andersen, et al., 1997). From another perspective, semantic knowledge is
said to deteriorate in a bottom-up manner with detailed
subordinate concepts lost before superordinate concepts
(Chan, Butters, et al., 1993; Martin, 1987; Schwartz,
Marin, et al., 1979; Warrington, 1975; Weingartner,
Kawas, et al., 1993). Although these studies were based
on semantic memory for nouns, the impoverished
semantic networks associated with verbs may make thes
words even more susceptible to degradation. Regardless of the specific nature of the semantic knowl-
edge that is degraded, the observations of the present
study may be consistent with degradation of verb the-
matic role knowledge in AD.

Others argue that the semantic deficit in AD is due to
impaired aspects of semantic processing. Specifically,
this processing deficit could be due to a deficit of re-
etoval, such as inhibitory breakdown resulting in com-
petition among semantic nodes thus delaying retrieval,
or fast decay of activation that affects the flow of infor-
mation within the semantic network (Dell, Schwartz,
et al., 1997; Kolk, 1995). Individuals with AD may per-
form poorly on tests of semantic knowledge from this
perspective because they have deficits in initiating and
maintaining organized retrieval strategies (Bonilla &
Johnson, 1995; Nebes, Boller, et al., 1986; Nebes &
Brady, 1990; Nebes, Martin, et al., 1984). Support for this theory has largely come from priming paradigms
(Nebes and colleagues). That is, when the effort of a
temporal semantic task is reduced to automatic processing (via
priming), AD patients are said to perform normally. Problems with this approach include the fact that
semantic priming for associative knowledge does not
necessarily mean that semantic knowledge is contribut-
ing to the association (e.g., Glosser, Friedman, et al.,
1998). In this priming study, AD patients primed for lex-
ical associates like “cottage-cheese” but not for semantic
category coordinates like “peach-plum.” In the current
study, we too used a task believed to assess the auto-
matic aspects of language processing (Tyler, Moss, et al.,
1997), yet still did not observe sensitivity to thematic role
knowledge. These findings suggest that the thematic role
insensitivity we observed may be due to something other
than this kind of processing impairment.

Another possible account for impaired thematic role
sensitivity in AD is concerned with the categorization
processes needed for verb comprehension. This model of
semantic memory proposes two components: Semantic
feature representations; and processes such as categori-
zation that make use of this knowledge for semantic deci-
sions. There are several types of categorization processes. One type is ‘rule-based.’ This process evaluates word
meaning relative to a set of diagnostic criteria. From this
perspective, the thematic role of a verb is evaluated in a
1062 rule-like manner with reference to a set of features repre-
1063 senting the verb’s meaning (Grossman, Smith, et al., 1064 2002, 2003). Selective attention identifies the relevant fea-
1065 tures; inhibitory control manages irrelevant features; and
1066 the criteria must be kept active in working memory while
1067 working memory is up-dated to keep track of the results
1068 of the evaluation. Evidence to support this approach
1069 comes from categorization judgments of brief object
1070 descriptions. However, these did not involve verbs or
1071 their associated thematic roles. There was no correlation
1072 between executive background tasks and sensitivity to
1073 thematic role violations in AD patients in the current
1074 study, moreover, suggesting that this model may be more
1075 appropriate for representations of concepts rather than
1076 verb-mediated agreements in sentences.
1077 An alternative processing theory is that individuals
1078 diagnosed with AD have semantic difficulty due to a fail-
1079 ure to inhibit competing associates (Hasher, Stoltzfus,
1080 et al., 1991; Hasher & Zacks, 1979). According to these
1081 researchers, efficient semantic processing requires the
1082 ability to inhibit competing semantic associates that
1083 become active during semantic processing. These
1084 researchers postulate that there is a breakdown in inhibi-
1085 tion at the semantic network level in AD that results in
1086 an extended search time associated with long reaction
1087 time latencies for both correct and incorrect associates.
1088 Such would fit a proposed model of thematic role pro-
1089 cessing described by Shapiro and Levine (1990). This
1090 model states that all of a verb’s thematic possibilities are
1091 activated when a verb is encountered. The thematic pro-
1092 cessor then assigns thematic roles to noun phrases as
1093 they are encountered in real-time. According to this the-
1094 ory, if AD patients activate all of the thematic matrix
1095 possibilities and at the same time they suffer from inhibi-
1096 tory breakdown, then the search process should be more
1097 effortful and result in extended reaction time latencies
1098 for both correct and incorrect associates. Although an
1099 intriguing possibility, data from the current investigation
1100 are not consistent with this theory. We found that the
1101 reaction time latency at the four-syllable time window
1102 for the AD patients is not significantly different from
1103 that of the control participants. This suggests that the
1104 AD patients are not engaged in a prolonged semantic
1105 search process. Additionally, there was no correlation
1106 between executive processing and thematic violation
1107 sensitivity—a finding that could have been supportive of
1108 the theory that semantic processing is related to inhibi-
1109 tory semantic demands.
1110 Fast decay of activation in the semantic network may
1111 also be influencing AD patient sensitivity to the thematic
1112 role agreements. Kolk and Van Gruven (1985) origi-
1113 nally posed the concept of fast decay to explain varia-
1114 tions in processing among agrammatic patients. Kolk (1995),
1115 according to Kolk (1995), two changes to the normal
1116 processing situation are possible. First, slow activation
1117 can occur in that it takes longer for an element to reach
1118 its critical level of activation. Second, fast decay may
1119 occur which makes elements unavailable because they
1120 fall below their critical level of activation too soon to be
1121 combined with other elements in the sentence represen-
1122 tation. The current study did not observe slow activation
1123 in processing thematic information. Thus, possibly the
1124 failure to process thematic roles is associated with rapid
1125 decay of activation. More work investigating the possi-
1126 bility of fast decay in semantic networks in AD patients
1127 is needed to evaluate this account of impaired thematic
1128 role knowledge.
1129 Regardless of the cognitive processes explaining them-
1130 atic role difficulty in AD, the semantic component of
1131 verb meaning may also be associated with a particular
1132 anatomic distribution of disease in these patients. While
1133 there has been no work assessing the neural basis for
1134 verb thematic roles in AD, a recent fMRI study investiga-
1135 ted the neural basis of verb meaning in AD relative to
1136 healthy seniors (Grossman, Koenig, et al., 2003). Patients
1137 were asked to judge the “pleasantness” of a verb, includ-
1138 ing verbs of motion and verbs of cognition. Both healthy
1139 seniors and AD patients activated the left posterolateral
1140 temporal region across both semantic categories. How-
1141 ever, a direct comparison revealed significantly reduced
1142 activation in this area in AD relative to healthy seniors.
1143 Activation was instead displaced to an adjacent region.
1144 A similar activation pattern was also seen for nouns
1145 (Grossman, Koenig, et al., 2003). The authors stated that
1146 this reduced and displaced activation may be due to the
1147 histopathological distribution of the disease in left pos-
1148 terolateral temporal cortex in AD. Other work has
1149 implicated left posterolateral temporal cortex in lexical–
1150 semantic processing in structural imaging studies of
1151 patients with damage to this region (Chertkow, Bub,
1152 et al., 1997; Hart & Gordon, 1990; Hillis, Wityk, et al.,
1153 2001). Correlations of cortical atrophy with lexical
1154 semantic judgments of nouns/objects in AD have impli-
1155 cated left temporal–parietal cortex as well (Baron, Chet-
1157 The data from the current investigation thus are con-
1158 sistent with a larger picture suggesting that verbs play
1159 multiple roles in sentence processing, and observations of
1160 AD patients suggest that some of these roles are disassocia-
1161 ble. Because the AD patients can comprehend transitivity,
1162 it is clear that they have an understanding of at least
1163 one component of a verb. In contrast, they have difficulty
1164 processing a verb’s thematic roles. There is much specula-
1165 tion about the precise basis for this impairment, but ad-
1166 tional work is needed to determine whether this is related
to degradation of verb thematic role knowledge or a defi-
1167 cit in processing this component of a verb.
1168 4.2. Frontotemporal dementia and verb comprehension
1169
1170 The pattern of performance in FTD differs from that
1171 seen in AD. Unlike AD, we did not observe sensitivity to
thematic or transitive agreements in FTD. This was
despite the relatively automatic nature of the on-line
task. FTD patients’ impairment thus cannot be attrib-
uted easily to task-related resource demands. There was
also no evidence of slowed processing, and we found no
correlation between agreement sensitivity and executive
and language comprehension abilities.

180 Verb naming and comprehension appears to be
181 impaired in FTD. Cappa, Binetti, et al. (1998) reported
182 that both AD and FTD patients were more impaired
183 with action naming relative to object naming. However,
184 the discrepancy between object and action naming was
185 significantly greater in FTD than in AD. Rhee, Antiqu-
186 ena, et al. (2001) reported that FTD patients are more
187 impaired for verbs than nouns on a picture-word match-
ing task. This study showed different patterns of compre-
188 hension difficulty in PNFA and non-aphasisic patients
189 with an executive disorder. The PNFA patients’ compre-
190 hension of verbs may have been related to degraded verb
191 knowledge since concurrent performance of a secondary
192 task did not worsen their performance further. Bak et al.
193 also suggested that the neural representation of verb
194 knowledge is degraded in some FTD patients (Bak,
195 O’Donovan, et al., 2001). In the present study, we tried
to determine whether there were consequences of this for
197 verb agreements during sentence processing. In fact
198 PNFA patients appeared to be broadly impaired in pro-
199 cessing verb transitivity and thematic role agreements. It
200 is important to note that there is some variability in
201 PNFA patients’ performance, with some patients show-
202 ing grammatical difficulty and others presenting primar-
203 ily with dysarthria (Thompson, Ballard, et al., 1997). It
204 may be that individual differences such as these masked
205 significant effects in FTD, and we were unable to bring
206 out effects within the PNFA patient subgroup because of
207 the small number of patients. Although we know less
208 about verbs in SD, there is much evidence suggesting
209 that SD patients have degraded knowledge of individual
210 word meanings (Hodges, Graham, et al., 1995; Hodges,
211 Patterson, et al., 1992, 1994; Lambon Ralph, Graham,
212 et al., 1998; Lambon Ralph, McClelland, et al., 2001;
213 Snowden, Goulding, et al., 1989). The finding that
214 PNFA patients and SD patients had similar patterns of
215 impairment may indicate that there is a single form
216 of Primary Progressive Aphasia, where different aspects
217 of language difficulty emerge at different points in the
218 course of the condition (Karbe, Kertesz, et al., 1993;
219 Mesulam, 2001; Mesulam, Grossman, et al., 2003) How-
220 ever, this is difficult to determine based on the small num-
221 ber of patients participating in this study. Additional work
222 is necessary to determine the role of verb difficulty in the
223 sentence processing deficits of FTD patients.

224 An alternate possibility is that processing verb knowl-
225 edge in a sentence could be due to independent deficits
226 involving each subcomponent of a verb, rather than de-
227 radation of all verb-associated knowledge, and that the
deficit in both verb components is due to the dependence
of one verb component on the other. An impairment in
transitivity in FTD could be due to degradation within
the grammatical system (Grodzinsky, 1986, 1990, 1995),
or there could be a failure to process grammatical knowl-
edge for the purpose of understanding a sentence (Frazier
& Friederici, 1991; Kolk, 1995; Swinney & Zurif, 1995;
Zurif, Swinney, et al., 1993). Transitivity is an example of
a core structure-building device necessary to support sen-
tence comprehension (Grodzinsky, 1986, 1990, 1995;
Shapiro & Levine, 1990). For example, transitivity signals
whether a verb requires a direct or indirect object. From
this perspective, transitivity provides a structure for the
semantic mapping of thematic roles, and a deficit appre-
ciating transitivity agreements thus may hinder the pro-
cessing of thematic roles. It may be that appreciation of
thematic role agreements is itself not impaired, but rather
its dependence on transitivity structure may result in
impaired thematic role processing. Grodzinsky (1995) pro-
poses, for example, that the structural traces that link
thematic roles to the grammatical referent of a verb can be
lost or “deleted.” Insensitivity to thematic roles thus
could involve a decay of the verb’s trace that would limit
reactivation of the agent role’s node following processing
of the verb. Alternately, there could be an impairment in
verb processing such that grammatical structure informa-
tion does not remain active long enough to allow process-
ing of transitivity or mapping of thematic roles (Frazier
& Friederici, 1991; Kolk, 1995; Swinney & Zurif, 1995;

4.3. Study limitations

There are shortcomings associated with this study that
must be kept in mind when interpreting our find-
ings. First, the study assessed patients with mild to mod-
erate disease severity, and the results should be general-
ized with caution to other AD and FTD cohorts. Second,
the diagnosis in these patients has not been validated
at autopsy. Although our clinic has histopatho-
logic confirmation of AD and FTD in many patients
resembling those who participated in this study, the
diagnosis of FTD and AD has been based on clinical
evaluation confirmed by structural and functional imag-
ing investigations. Third, the small sample size of the
patient samples and, in particular, the FTD subgroups
may have contributed to insensitivity of the on-line task.
Finally the word detection task is not entirely free of
resource demands since divided attention is needed to
detect a target word while listening to a sentence for
comprehension.

With these caveats in mind, the current study demon-
strates that verb agreement processing is compromised
in AD and FTD. Comprehension of thematic role agree-
ments, but not transitivity agreements, is impaired in
AD. This may be related to their broader semantic defi-

1286 cit. FTD patients, in contrast, were insensitive to both thematic and transitivity agreements. This may be associated with a broad-based degradation in verb knowledge, or difficulty with structure-building that also impaired comprehension of thematic roles in a sentence.

1291 Appendix A

1292

1293 Thematic condition

1294 The [chickens/jokes] appear quickly from behind...

1295 The [trains/houses] bring charcoal to the tiny...

1296 The [buckets/colors] capture nearly every drop...

1297 The [lizards/feathers] cling next to the cage...

1298 The [trucks/brushes] compress rotten smelly bags...

1299 The [turtles/birds] crawl through dry grass toward...

1300 The [vines/acorns] creep beside the old...

1301 The [radar/desk] detects changes in motion...

1302 The [stars/rocks] emerge between clouds on clear...

1303 The [plaster/thought] falls onto the carpet...

1304 The [teacher/tree] gazes away from disabled...

1305 The [plumber/pillow] injects bright yellow liquid...

1306 The [worker/cow] installs gray bricks with black...

1307 The [duck/snake] limps toward every person...

1308 The [police/fire] listen closely from behind...

1309 The [chef/sauce] mashes buckets of overly...

1310 The [academics/light] mold ladies into national...

1311 The [eagle/flame] notices movement on the canyon...

1312 The [wind/rober] peeks into the room through...

1313 The [owl/rain] peers beneath old maple tree...

1314 The [waiter/chair] puts cheese samples near...

1315 The [submarines/sponge] rescue dolphins and other...

1316 The [roaches/snails] scurry loudly across this kitchen...

1317 The [thermometer/curtain] senses minor changes between...

1318 The [student/soup] dumps onto the table...

1319 The [arrow/worm] soars through the trees into...

1320 The [butcher/lion] sorts red meat from behind...

1321 The [fireman/fountain] stumbles across the threshold...

1322 The [passengers/blankets] view movies during cross...

1323 Transitive Condition

1324 The [bugs/appear] enter [water] nightly under porch...

1325 The [hamster/brings/brings beside] chewed carrot chips...

1326 The [bubbles/disgust] with cold water around...

1327 The [girls/compass/compass through] dough using large...

1328 The [child/crawls/graws] through mud and leaves...

1329 The [consepts/creep/dusk] nightly into local...

1330 The [device/detects/defect into] tide levels and changes...

1331 The [tadpoles/merge/merge caves] brown and very muddy...

1332 The [clown/gazes/gazes face] toward the circus building...

1333 The [artist/jects/injects within] rust colored ink...

1334 The [salesman/installs/installs behind] new and antique kitchen...

1335 The [donkey/timps/timps straw] toward water buckets...

1336 The [jury/sects/sects lawyer] quietly for more...

1337 The [children/mash/mash within] rocks into the dry...

1338 The [reporters/mold/mold toward] boring town events...

1339 The [travelers/notice/notice along] angry country natives...

1340 The [mouse/peeks/peeks cheese] bravely through bedroom...

1341 The [machines/peer/peer light] inside small dark...

1342 The [researchers/see/see within] changes in the ocean...

1343 The [secretary/puts/puts around] coffee stains along...

1344 The [navy/see/see within] injured baby black...

1345 The [crab/scouries/scrucies sand] through the iron pipe...

1346 The [twins/sense/sense toward] exciting and traumatic...

1347 The [cowboy/slims/slims walls] behind the old...

1348 The ball [soars/soars dirt] beyond the crowded...

1349 The king [sorts/sorts in] rare Asian jade...

1350 The horses [stumble/stumble rock] along the newly...

1351 The strangers [view/view onto] ocean seafood markets...

1352 [], brackets contain the correct and incorrect agreements. Italicized words, target word used for the immediate position. Underlined words, target words used for the delay position. Each sentence ended after the participant identified the target word.

1353 References

